Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            In this work, we show that the class of multivariate degree-d polynomials mapping {0,1}n to any Abelian group G is locally correctable with Õd((log n )d) queries for up to a fraction of errors approaching half the minimum distance of the underlying code. In particular, this result holds even for polynomials over the reals or the rationals, special cases that were previously not known. Further, we show that they are locally list correctable up to a fraction of errors approaching the minimum distance of the code. These results build on and extend the prior work of Amireddy, Behera, Paraashar, Srinivasan, and Sudan [1] (STOC 2024) who considered the case of linear polynomials (d = 1) and gave analogous results. Low-degree polynomials over the Boolean cube {0,1}n arise naturally in Boolean circuit complexity and learning theory, and our work furthers the study of their coding-theoretic properties. Extending the results of [1] from linear polynomials to higher-degree polynomials involves several new challenges and handling them gives us further insights into properties of low-degree polynomials over the Boolean cube. For local correction, we construct a set of points in the Boolean cube that lie between two exponentially close parallel hyperplanes and is moreover an interpolating set for degree-d polynomials. To show that the class of degree-d polynomials is list decodable up to the minimum distance, we stitch together results on anti-concentration of low-degree polynomials, the Sunflower lemma, and the Footprint bound for counting common zeroes of polynomials. Analyzing the local list corrector of [1] for higher degree polynomials involves understanding random restrictions of non-zero degree-d polynomials on a Hamming slice. In particular, we show that a simple random restriction process for reducing the dimension of the Boolean cube is a suitably good sampler for Hamming slices. Thus our exploration unearths several new techniques that are useful in understanding the combinatorial structure of low-degree polynomials over {0, 1}n.more » « lessFree, publicly-accessible full text available January 12, 2026
- 
            In this work, we show that the class of multivariate degree-d polynomials mapping {0,1}n to any Abelian group G is locally correctable with Õd((log n )d) queries for up to a fraction of errors approaching half the minimum distance of the underlying code. In particular, this result holds even for polynomials over the reals or the rationals, special cases that were previously not known. Further, we show that they are locally list correctable up to a fraction of errors approaching the minimum distance of the code. These results build on and extend the prior work of Amireddy, Behera, Paraashar, Srinivasan, and Sudan [1] (STOC 2024) who considered the case of linear polynomials (d = 1) and gave analogous results. Low-degree polynomials over the Boolean cube {0,1}n arise naturally in Boolean circuit complexity and learning theory, and our work furthers the study of their coding-theoretic properties. Extending the results of [1] from linear polynomials to higher-degree polynomials involves several new challenges and handling them gives us further insights into properties of low-degree polynomials over the Boolean cube. For local correction, we construct a set of points in the Boolean cube that lie between two exponentially close parallel hyperplanes and is moreover an interpolating set for degree-d polynomials. To show that the class of degree-d polynomials is list decodable up to the minimum distance, we stitch together results on anti-concentration of low-degree polynomials, the Sunflower lemma, and the Footprint bound for counting common zeroes of polynomials. Analyzing the local list corrector of [1] for higher degree polynomials involves understanding random restrictions of non-zero degree-d polynomials on a Hamming slice. In particular, we show that a simple random restriction process for reducing the dimension of the Boolean cube is a suitably good sampler for Hamming slices. Thus our exploration unearths several new techniques that are useful in understanding the combinatorial structure of low-degree polynomials over {0, 1}n.more » « lessFree, publicly-accessible full text available January 12, 2026
- 
            In this work, we show that the class of multivariate degree-d polynomials mapping {0,1}n to any Abelian group G is locally correctable with O˜d((logn)d) queries for up to a fraction of errors approaching half the minimum distance of the underlying code. In particular, this result holds even for polynomials over the reals or the rationals, special cases that were previously not known. Further, we show that they are locally list correctable up to a fraction of errors approaching the minimum distance of the code. These results build on and extend the prior work of the authors [ABPSS24] (STOC 2024) who considered the case of linear polynomials and gave analogous results. Low-degree polynomials over the Boolean cube {0,1}n arise naturally in Boolean circuit complexity and learning theory, and our work furthers the study of their coding-theoretic properties. Extending the results of [ABPSS24] from linear to higher-degree polynomials involves several new challenges and handling them gives us further insights into properties of low-degree polynomials over the Boolean cube. For local correction, we construct a set of points in the Boolean cube that lie between two exponentially close parallel hyperplanes and is moreover an interpolating set for degree-d polynomials. To show that the class of degree-d polynomials is list decodable up to the minimum distance, we stitch together results on anti-concentration of low-degree polynomials, the Sunflower lemma, and the Footprint bound for counting common zeroes of polynomials. Analyzing the local list corrector of [ABPSS24] for higher degree polynomials involves understanding random restrictions of non-zero degree-d polynomials on a Hamming slice. In particular, we show that a simple random restriction process for reducing the dimension of the Boolean cube is a suitably good sampler for Hamming slices.more » « lessFree, publicly-accessible full text available November 13, 2025
- 
            We consider the task of locally correcting, and locally list-correcting, multivariate linear functions over the domain {0,1}n over arbitrary fields and more generally Abelian groups. Such functions form error-correcting codes of relative distance 1/2 and we give local-correction algorithms correcting up to nearly 1/4-fraction errors making O(logn) queries. This query complexity is optimal up to poly(loglogn) factors. We also give local list-correcting algorithms correcting (1/2 − ε)-fraction errors with Oε(logn) queries. These results may be viewed as natural generalizations of the classical work of Goldreich and Levin whose work addresses the special case where the underlying group is ℤ2. By extending to the case where the underlying group is, say, the reals, we give the first non-trivial locally correctable codes (LCCs) over the reals (with query complexity being sublinear in the dimension (also known as message length)). Previous works in the area mostly focused on the case where the domain is a vector space or a group and this lends to tools that exploit symmetry. Since our domains lack such symmetries, we encounter new challenges whose resolution may be of independent interest. The central challenge in constructing the local corrector is constructing “nearly balanced vectors” over {−1,1}n that span 1n — we show how to construct O(logn) vectors that do so, with entries in each vector summing to ±1. The challenge to the local-list-correction algorithms, given the local corrector, is principally combinatorial, i.e., in proving that the number of linear functions within any Hamming ball of radius (1/2−ε) is Oε(1). Getting this general result covering every Abelian group requires integrating a variety of known methods with some new combinatorial ingredients analyzing the structural properties of codewords that lie within small Hamming balls.more » « less
- 
            We consider the task of locally correcting, and locally list-correcting, multivariate linear functions over the domain {0,1}n over arbitrary fields and more generally Abelian groups. Such functions form error-correcting codes of relative distance 1/2 and we give local-correction algorithms correcting up to nearly 1/4-fraction errors making O(logn) queries. This query complexity is optimal up to poly(loglogn) factors. We also give local list-correcting algorithms correcting (1/2 − ε)-fraction errors with Oε(logn) queries. These results may be viewed as natural generalizations of the classical work of Goldreich and Levin whose work addresses the special case where the underlying group is ℤ2. By extending to the case where the underlying group is, say, the reals, we give the first non-trivial locally correctable codes (LCCs) over the reals (with query complexity being sublinear in the dimension (also known as message length)). Previous works in the area mostly focused on the case where the domain is a vector space or a group and this lends to tools that exploit symmetry. Since our domains lack such symmetries, we encounter new challenges whose resolution may be of independent interest. The central challenge in constructing the local corrector is constructing “nearly balanced vectors” over {−1,1}n that span 1n — we show how to construct O(logn) vectors that do so, with entries in each vector summing to ±1. The challenge to the local-list-correction algorithms, given the local corrector, is principally combinatorial, i.e., in proving that the number of linear functions within any Hamming ball of radius (1/2−ε) is Oε(1). Getting this general result covering every Abelian group requires integrating a variety of known methods with some new combinatorial ingredients analyzing the structural properties of codewords that lie within small Hamming balls.more » « less
- 
            Megow, Nicole; Smith, Adam (Ed.)We study the question of local testability of low (constant) degree functions from a product domain 𝒮_1 × … × 𝒮_n to a field 𝔽, where 𝒮_i ⊆ 𝔽 can be arbitrary constant sized sets. We show that this family is locally testable when the grid is "symmetric". That is, if 𝒮_i = 𝒮 for all i, there is a probabilistic algorithm using constantly many queries that distinguishes whether f has a polynomial representation of degree at most d or is Ω(1)-far from having this property. In contrast, we show that there exist asymmetric grids with |𝒮_1| = ⋯ = |𝒮_n| = 3 for which testing requires ω_n(1) queries, thereby establishing that even in the context of polynomials, local testing depends on the structure of the domain and not just the distance of the underlying code. The low-degree testing problem has been studied extensively over the years and a wide variety of tools have been applied to propose and analyze tests. Our work introduces yet another new connection in this rich field, by building low-degree tests out of tests for "junta-degrees". A function f:𝒮_1 × ⋯ × 𝒮_n → 𝒢, for an abelian group 𝒢 is said to be a junta-degree-d function if it is a sum of d-juntas. We derive our low-degree test by giving a new local test for junta-degree-d functions. For the analysis of our tests, we deduce a small-set expansion theorem for spherical/hamming noise over large grids, which may be of independent interest.more » « less
- 
            We study the local decodability and (tolerant) local testability of low‐degreen‐variate polynomials over arbitrary fields, evaluated over the domain {0,1}n. We show that for every field there is a tolerant local test whose query complexity depends only on the degree. In contrast we show that decodability is possible over fields of positive characteristic, but not over the reals.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available